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Abstract-A new approach is used to develop a geometrically exact nonlinear beam model for
naturally curved and twisted solid composite rotor blades undergoing large vibrations in three­
dimensional space. A combination of the new concepts of local displacements and local engineering
stresses and strains, a new interpretation and manipulation of the virtual local rotations, an exact
coordinate transformation, and the extended Hamilton principle is used to derive six fully nonlinear
equations ofmotion describing one extension, two bending, one torsion, and two shearing vibrations
of composite beams. The formulation is based on an energy approach, but the derivation is fully
correlated with the Newtonian approach and provides a straightforward explanation ofall nonlinear
structural terms without using complex tensor operations or asymptotic expansions. The theory
accounts for in-plane and out-of-plane warpings due to bending, extensional, shearing and torsional
loadings, elastic couplings among warpings, and three-dimensional stress effects by using the results
of a two-dimensional, static, sectional, finite element analysis. Also, the theory fully accounts for
extensionality, initial curvatures and geometric nonlinearities. The equations display linear elastic
couplings due to structural anisotropy and initial curvatures and nonlinear geometric couplings.
The theory contains most of the existing beam theories as special cases, and the final equations of
motion are put in compact matrix form.
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a reference rectangular frame fixed on the hub
translational inertia terms
rotational inertia terms
abc when t = 0
the absolute displacement vector of the observed point
the axial strain on the reference line
internal stress resultants
mass inertias
unit vectors along a, b, c, {iabe } = {ia' ib, I,} T
unit vectors along x, y, z, {ix,,} = {Ix> i" i,} T

unit vectors along e, 1/, " rim} = {i" i2, i3V
the initial curvatures
the undeformed curvature matrix, [k] = [P(k" k 2, k 3)]

internal moments
the material stiffness matrix
= A (s)ia+B(s)ib+C(s)i" the undeformed position vector of the reference point
the undeformed arc length from the beam root to the reference point, (.), = 0(' )/os
time, (I) = o(')/ot
transformation matrix, rim} = [T]{ix,,}

transformation matrix, {ix,,} = [T-']{iabe}
transformation matrix, {iabe } = [T"]{i.6,}

= u,i, +U2i2+U3i3, the local displacement vector of the observed point
the displacement components of the rotor hub
the displacements of the reference point with respect to the axes x, y, z
warpings with respect to the axese, 1/,', {W} = {WI' W 2, W 3V
an undeformed orthogonal curvilinear frame
xyz when t = 0
an Euler angle related to the bending of the beam
shear rotation angles at the reference line
local virtual rotation angles of the observed cross section
= {Ell, 8 12 , 813, 822' 823, 8n }T, strain vector, {8} = [S]{I/t}+{f}
a deformed curvature matrix, [K] = [P(P" P2' P3)]
a deformed local orthogonal curvilinear frame
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deformed curvatures
= {UIl, U\2, UIl, u22 , Un, UlJ}T, stress vector, {u} = [Q]{e}
an Euler angle related to the torsion of the beam
= {e,Y6,y"p\-k\,P2- k 2,PJ-k J}T
= {YY'6 +zi" 0, 0, 0, 0, O}T
= {e, Y6, Y" p\-k\, P2-k2, pJ-kJ> i6' i,}'
the angular velocity vector of the rotor hub
the angular velocity vector of the coordinate system ~f/(

the angular velocity vector of the coordinate system abc
the angular velocity vector of the coordinate system xyz

·[:' -~:, ~~'J

1. INTRODUCTION

A nonlinear curved and twisted beam is often used to model helicopter rotor blades, aviation
propeller blades, turbine blades, arm-type positioning mechanisms of magnetic disk drives,
and robot manipulators; beam-type specimens are usually used for the characterization of
materials in experiments. Moreover, the post-buckling strength ofbeams plays an important
role in the design of aircraft structures because conventional aircraft structural elements
are often designed to operate in the post-buckling range where nonlinear beam theories are
needed. Recently, the rapid development in aerospace exploration has stimulated research
into the dynamics and control of flexible composite structures because most space structures
are large and flexible and characterized by low inherent dampings and long duration
responses to transient loads. Consequently, the development of a general curved beam
theory, especially a nonlinear composite beam theory, is a constant research interest.

Geometric nonlinearities are important when the lateral deflections of a beam are
finite. In this case, the axial force can playa significant role in carrying the load. Moreover
geometric nonlinearities couple the equations governing the extension, bending, torsion
and shearing vibrations. They are important in post-buckling analyses, nonlinear panel
flutter and dynamic stability problems. Because the ratios of the Young's moduli to the
shear moduli are between 20 and 50 in modern composites and between 2.5 and 3.0 in
isotropic materials, transverse shear deformations are significant for composite structures,
especially for laminated or thick structures (Whitney, 1987; Rao et al., 1976). Moreover,
because of the anisotropy, the asymmetry of the cross-section, and the non-uniformity of
Poisson's ratios over the cross-section, torsional warping, in-plane warpings and transverse
normal stresses can be significant for laminated composite beams or box beams. In other
words, all three-dimensional stress effects can be important for general anisotropic beams.
Hence, the objective of this paper is to develop a general nonlinear curved beam theory that
includes three-dimensional stress effects (i.e. out-of-plane and in-plane warpings, transverse
normal stresses, etc.) and geometric nonlinearities as well as anisotropy and initial cur­
vatures.

Von Karman strains do not fully account for geometric nonlinearities due to large
rotations (Pai and Nayfeh, 1992). To fully account for geometric nonlinearities by using
the Green-Lagrange strains, the correct conjugate stresses, the second Piola-Kirchhoff
stresses must be used, not the Cauchy stresses or engineering stresses. However, even if
the second Piola-Kirchhoff stresses are used correctly with Green-Lagrange strains in a
formulation, they cannot easily match with real boundary conditions because they are
measures ofenergy, not ofgeometry, and have no definite directions. Moreover, the material
stiffness constants obtained from small-strain experiments cannot be directly used to relate
the Green-Lagrange strains and second Piola-Kirchhoff stresses in the constitutive equa­
tion; if the material stiffnesses from small-strain experiments are used, geometric non­
linearities can be mistaken for material nonlinearities. Consequently, local engineering
stress and strain measures are more appropriate and convenient ones to use.

Recently, two or three successive Euler-like rotations are commonly used in obtaining
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the exact transformation matrix that relates the deformed and undeformed states and hence
accounts for large geometric nonlinearities (Hodges and Dowell, 1974; Hodges, 1976;
Dowell et al., 1977; Crespo da Silva and Glynn, 1978; Alkire, 1984; Rosen and Rand,
1986; Rosen et al., 1987; Bauchau and Hong, 1987; Minguet and Dugundji, 1990; Pai and
Nayfeh, 1990; Simo and Vu-Quoc, 1991; Banan et al., 1991). However, because finite
rotations are not vector quantities, variations of three successive Euler-like angles are
not independent because they are not along three perpendicular directions. Moreover,
coordinate transformations using three Euler angles result in asymmetric equations of
motion, and the torsion-related angle </J does not represent the real twist angle even if only
two Euler angles are used in the transformation (Pai and Nayfeh, 1990). Hence, the concept
of virtual local rotation (Pai and Nayfeh, 1992) is needed in order to derive fully nonlinear
equations governing the motions along three perpendicular directions.

Moreover, shear and torsional warpings are structure-dependent functions and are
independent of flexural displacements of the reference line of the beam because warpings
are displacements with respect to the deformed cross-sections. Hence, warpings need to be
modeled by using further dependent variables, which results in more equations of motion.
Also, to account for nontrivial shear stress 0"23 and transverse normal stresses 0"22 and 0"33'

where the axis 1 is along the reference line of the beam, some energy-related stress resultants
need to be introduced. Furthermore, the elastic energy of anisotropic beams is a very
complicated function, especially for beams with significant torsional and shear warpings,
and hence it is inconvenient to obtain the explicit expression of elastic energy first and then
use an energy formulation to derive the equations of motion.

Since in-plane and out-of-p1ane warpings are relative, local displacements with respect
to the deformed cross-section and are much smaller than global displacements, their influ­
ence on inertial forces is negligible. But these displacements offer extra degrees of freedom
for the deformation of cross-sections and hence greatfully affect the elastic properties.
Consequently, to account for three-dimensional stress effects in a one-dimensional beam
model, one needs to include warping effects in the elastic energy and the constitutive
equations. For geometrically nonlinear elastic anisotropic beams, a one-dimensional beam
model with structural stiffness matrices and warping functions determined by using a two­
dimensional sectional analysis is a general and practical approach in solving nonlinear
anisotropic beam problems (Hodges, 1988). This approach was used by Bori and Merlini
(1986) and Hodges (1990) among others. Since helicopter rotor blades are typically built­
up structures with anisotropic and/or nonhomogeneous materials, an analytical approach
to obtain the structural stiffness matrices and warping functions is almost impossible and
a finite element-based approach is more practical. Giavotto et al. (1983) presented a two­
dimensional, static, sectional, finite element analysis of warpings for straight beams, the
formulation of which is linear and based on an undeformed coordinate system. After
Giavotto et al. (1983), Altigan and Hodges (1991) and Hodges et al. (1992) presented
another derivation of such sectional analysis of straight beams.

For initially curved and twisted composite beams, Pai and Nayfeh (1993) used an
approach completely different to those used by Giavotto et al. (1983), Borri and Merlini
(1986), Atilgan and Hodges (1991), and Hodges (1990), to formulate a nonlinear two­
dimensional sectional finite element analysis. Moreover, in the two-dimensional sectional
analysis one needs to restrain the six rigid-body motions (three translations and three
rotations) in order to make the problem nonsingular. Because ofthe use of the new concept
of local stress and strain measures and a different interpretation and manipulation of the
virtual local rotations, the six constraint equations derived by Pai and Nayfeh (1993) are
exact. On the other hand, the constraints used in the literature are approximate, indirect
and inconvenient to implement in finite element computations. The six constraints used by
Borri and Merlini (1986) are based on the assumption that the average work done by the
surface tractions in producing the warping displacements on the cross-section is zero. Four
of the six constraints used by Hodges et al. (1992) are based on the assumption that the
average warping displacements and in-plane rotation due to warping on the cross-section
are zero and the other two constraints are used to define the deformed, local coordinate
system.
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In this paper, we develop a geometrically exact nonlinear theory for initially curved
and twisted composite beams by using a combination ofthe new concept oflocal engineering
stress and strain measures, new manipulation and interpretation of the concept of virtual
local rotations, an exact coordinate transformation, and the extended Hamilton principle.
The theory is developed in a very different manner from any other approaches in the
literature and provides a straightforward explanation and very clear insight into the physical
meanings of all the structural and inertial terms. We extend our former beam theory (Pai
and Nayfeh, 1992) by considering beams with arbitrary cross-sections and initial bending
and twisting curvatures and accounting for three-dimensional stress effects by using the
warping functions obtained from a two-dimensional, sectional, finite element analysis (Pai
and Nayfeh, 1993). Extensionality is considered, shear correction factors are not required,
couplings due to anisotropy and initial curvatures are included, and the influence of inertial
forces due to the rigid-body motion of the beam reference frame is also included. Moreover,
the formulations using an energy approach and a Newtonian approach are fully correlated
in the derivation.

2. COORDINATE SYSTEMS AND CURVATURES

We consider the naturally curved and twisted beam shown in Fig. 1. We assume that
the cross-section can be of any shape and the beam can be nonprismatic. Three coordinate
systems are used in the derivation. The xyz system is an orthogonal curvilinear coordinate
system, where the x axis denotes the reference line of the beam and s is the undeformed arc
length from the root of the beam to the reference point on the observed cross-section. The
abc system is a reference rectangular coordinate system fixed on the hub of the beam, where
the c axis is along the centerline of the rotor hub. As the formulation will start from a
particle point of view, there is no need to calculate the locations of the mass centroid, area
centroid, tensile axis, or shear center of the cross-section. Thus, the origin (i.e. the reference
point of the observed cross-section) of the xyz system can be at the mass centroid, the area
centroid, the shear center, or any other point on the cross-section and the y and z axes need
not be the principal axes of the cross-section. Moreover, the ~rJ' system is a local orthogonal
curvilinear coordinate system, where the ~ axis represents the deformed reference line and
the rJ and , axes represent the deformed y and z axes only if there were no shear and
torsional warpings.

We let ia , iband ic be unit vectors along the a, b, and c axes; ix, iyand iz be unit vectors
along the x, y and z axes; and iI, i2 and i3 be unit vectors along the ~, rJ and' axes.
Moreover, we assume that the abc and xyz systems represent the abc and xyz systems at
t = 0, t is the time, net) is the angular velocity of the hub, and ih is the unit vector along
the direction of net), as shown in Fig. 2.
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Fig. 1. Coordinate systems: abc is the reference rectangular frame, which is fixed on the hub; xyz
is the orthogonal curvilinear frame, where the x axis represents t~e undeformed reference line and
the y and z axes are on the observed cross·section and perpendicular to x; ~l'/' is the local orthogonal

curvilinear coordinate system, where the ~ axis represents the deformed reference line.
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Fig. 2. The system configuration and displacements: u, v and ware displacement components of
the reference point on the observed cross-section and I/> is an Euler angle related to the torsion of

the beam.

We let Ij denote the unit vectors along the axes of an arbitrary orthogonal coordinate
system and let its angular velocity be given by

(la)

Then, if X and Yare two arbitrary vectors given by

(I b)

we obtain the following identities

XxV ~ (1"1,,I,j[P(X))'G:} ~ (l"I"I,}[P(y)J{~:} ([c)

XliI +x2i 2+x313 = al x X = {al}T[P(X)V{I 123 } (I d)

XIII +X212 +X313 = iii x X+al x (ai x X)

= {diV[P(X)V{I 123 } + {aiV[P(X)f[P(al)]{I 123 }, (Ie)

where

[P(X)] =[P(X h X 2, X 3)] =[-~3
X 2

(If)

In Fig. 2, U, v and w represent the displacement components of the reference point on
the observed cross-section with respect to the x, y and z axes. The undeformed position
vector R of the reference point of the observed cross-section is known and given by

(2)

Also, the undeformed angles 02h 022 and 023 of the y axis with respect to the abc system
are assumed to be known and given by

SAS 31:9-1
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(} - I (" ") (} - I (" ") (} - 1 (" ")21 = COS ly"la , 22 = COS ly"lb' 23 = COS ly"le , (3)

where the (}2i (i = 1,2,3) are functions of s only and 0 ~ (}2i ~ 180°. It follows from eqn (2)
that

(4)

where the prime indicates the derivative with respect to s. Using eqns (3) and (4) and the
orthonormality property of the unit vectors, we obtain

where the transformation matrix [T1 is given by

(5a)

B'
cos (}22

C' cos (}21 -A' cos (}23

C' ]cos (}23 •

A' cos (}22-B' cos (}21

(5b)

Using eqn (5a), the orthonormality property of ix, iy and iz [e.g. o(ix" ix)/os =
o(ix" iy)/os = 0], and the identity [T1- 1 = [T1 T (because [T1 is a unitary matrix), we
obtain

:s {ixyz } = [k ]{ixyz },

where the initial curvature matrix [k] is given by

(6a)

Here, k 1> k 2 and k 3 are the initial curvatures with respect to the x, y and z axes, respectively;
they are functions of s only.

Following Alkire (1984), we use two sequential Euler angles a and c/J to describe the
rotation of the observed element from the undeformed to the deformed position. The first
angle, a, characterizes the bending rotation about the axis n, which is defined later, as shown
in Fig. 3. The second angle, c/J, is related to the torsional motion about the bent reference
axis ~. Hence, the transformation which relates the undeformed coordinate system xyz to
the deformed coordinate system ~'1' is

where the transformation matrix [T] is given by

(7a)

o
cos c/J
-sin c/J

Si~ c/J] [B(a)].

cos c/J

(7b)

The transformation matrix [B(a)] is due to the bending rotation a (see Fig. 3), which rotates
the x axis to the ~ axis, the y axis to the YI axis, and the z axis to the Zl axis. We note that
the angles between the y and Y J axes and the z and z 1 axes are not equal to a because the
Y-Yl and Z-ZI planes are not perpendicular to the n axis. It follows from Fig. 3 that
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Fig. 3. Two successive Euler angle rotations of a differential beam element.
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(8)

where i1 and ij are unit vectors along the Yl and z} axes, respectively.
Next we need to represent [B(a)] in terms of the displacements u, v and w. In Fig. 4,

we show the relationship between the reference line and the Euler angles a and cP. It follows
from Fig. 4 and eqns (6a) and (6b) that the displacement vectors of the two reference
points (at s) and q (at s+ds) are

p: D 1 = uix+viy+wiz

aD}
q: D 2 =D 1 +fudS

= D} + [(u' -vk3 + wk2)Ix+ (v' +uk3 -wk1)iy+ (w' -uk2 +vk 1)iz] ds. (9)

Hence, the vector from the deformed reference point p to the deformed reference point q
is

n

z
Fig. 4. Relationship between the reference line and the Euler angles.
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pq = dsix +D 2-D I

= [(1 +u' -vk3 +wk2)ix + (v' +uk 3 -wk l )iy+(w' -uk2+vk,)iz] ds. (10)

(lIa)

where e is the axial strain along the reference line and

(lIb)

It follows from eqn (10) and Fig. 4 that the relationship between the axial strain e and the
displacements is

pq-ds
e=---

ds

= J(I +u' -vk3 +wk2)2+ (v' +uk 3 - Wk,)2 + (w' -uk2+Vk J)2 -1. (12)

A rotation axis n and a rotation angle ex about the n axis are used to define the bending
rotation. As shown in Fig. 4, we choose the axis n to be

(I3a)

Substituting for i] from eqn (IIa) into (l3a), we obtain

(l3b)

When the xyz coordinate system is rotated by an angle ex with respect to the axis n, the
rotated vector i of an arbitrary vector r, which is fixed on the xyz frame, is related to rand
ex by (Smith, 1976)

i = (1- cos ex)(r' n)n + cos exr+ sin exn x r. (14)

By letting r = ix and i = iI, r = iy and i = ii, and r = iz and i = ij in eqn (14) individually
and using eqn (8), we obtain

[

n2
[B(ex)] = I

sym.

(15)

where [I] is the identity matrix. Substituting eqn (l3b) into eqn (15), assuming that
o~ ex < 180°, and using the relationships

we obtain
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[

Til

[B(at:)] = - T I2

-T13

(17a)

We note from eqn (l7a) that [B(at:)] is indeterminate only when TIl = -1, which
corresponds to at: = 180° and T 12 = T I3 = 0 according to eqn (16). Hence, it follows from
eqn (l3b) that nl = 0 and n2 and n3 are indeterminate. In this case, eqn (15) reduces to

(17b)

Using the concept of continuity, one can determine the values of n2' n3 and [B(at:)] at a
particular point s = sp by comparing eqn (17b) with eqn (l7a) at adjacent points s = sp- ors:. Hence, any arbitrary deformation (i.e. 0 ~ at: ~ 180°) can be modeled.

To complete the geometry analysis we need expressions for the curvatures. Using eqns
(7a) and (6a) and the identity [T] - I = [T] T (because [T] is a unitary matrix), we obtain

(18a)

where the deformed curvature matrix [K] is given by

(18b)

The twisting curvature P I and the bending curvatures P2 and P3 can be obtained by using
eqns (18a) and (l8b) and the orthonormality property of it. i2 and i 3 as

(19)

We note that, when there are no elastic deformations, [T] is an identity matrix and [K] = [k].
Using eqns (l2), (lIb), and (l7a), one can express the elements of the transformation

matrix [T] defined in eqn (7b) and the curvatures defined in eqn (19) in terms of u, v, w
and r/J and their derivatives. We note that the Pi are not real curvatures because the
differentiation is with respect to the undeformed element length ds and not the deformed
element length (1 +e) ds.

3. THREE-DIMENSIONAL STRAIN FIELD

To fully account for the change in configuration, we use local engineering stress and
strain measures. The movement of the observed cross-section consists of two parts. The
first part is a rigid-body motion (see Fig. 5), which is due to the rigid-body translation
U(t)ia+ V(t)i5+ W(t)ic and rotation nih of the rotor hub, the displacements u, v and wof
the reference point, and the rotation angle r/J. This rigid-body motion rotates the dy and dz
sides of the observed cross-section so that they are parallel to the 11 and' axes, respectively.
The second part is a local, strainable displacement vector U, which results in strains. Because
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the rigid-body motion does not result in any strain energy, to calculate the elastic energy
we only need to deal with the strainable, local displacement field U. To account for three­
dimensional stress effects, we include both in-plane and out-of-plane deformations in the
displacement field. Thus, we represent the local displacement field as

U1(s, y, z, t) = uUs, t) +Z[02(S, t) - o20(S)] - y[03(S, t) - o30(S)]

+Z)/s(s, t) + Y)'6(S, t) + WI (s,y, Z, t)

U2(S,y, z, t) = ug(s, t) -Z[ol (s, t) -oIO(S)] + W 2(s,y, z, t)

U3(S,y,Z,t) = uUs,t)+y[ol(S,t)-olO(S)]+ W 3(s,y,z,t). (20)

Here, the Lagrangian coordinates s, y and z are used to express all functions because
engineering strains are referred to the undeformed length. Moreover, Ul> U2 and U3 are local,
strainable displacements with respect to the e, 11 and' axes, respectively; u?(s, t) ==
u;(s, 0, 0, t), i = 1,2,3; 0 I> O2 and 03 are the rotation angles of the observed cross­
section with respect to the e, 11 and' axes, respectively; 0 10, 020 and 030 are the initial
rotation angles of the observed cross-section with respect to the e, 11 and' axes, respectively;
)/s and)/6 are the out-of-plane shear rotation angles evaluated at the reference axis, that is,
)/s == ulzly~z~0,)/6 == ulyly~z~o. The function W1(s,y,z, t) represents the out-of-plane warp­
ing due to higher order transverse shear deformations (first-order shear deformations are
accounted for by Z)/s and y)/6) and torsional warping. The functions W 2(s,y,z,t) and
W 3(s, y, Z, t) represent the in-plane warpings due to the Poisson effect and the action of
extension and/or bendings.

Because the e11' is a local coordinate system attached to the observed cross-section and
the unit vector i I is tangent to the deformed reference axis, we have

Because the local displacement vector U is given by

c

b

,,
I

I
I

I,,
V(t),,

I,,
I,

W(q,
c--,";':"",~

U(t) ...... /

I "~,'W

att=O

x

Fig. 5. Displacements and relations among coordinate systems.



A new theory of curved and twisted composite rotor blades

we obtain from eqns (22), (20), (18a), (18b) and (21) that

oU ou\. OU2. OU3. Oil oi2 oi 3
a; = &1 1+ &12+ &13+ U\ a; +U2a; +U3 OS

= [e+Z(P2-k2)-Y(P3-k3)+zy's+JY6+ W~]il +[ -z(PI-k l )+ W;]i 2

+[Y(PI-k l)+ W3]i 3+(W3P2- W2P3)i l

+ [(WI +ZYs+YY6)P3 - W3pdi2 + [W2PI - (WI +ZYs +YY6)P2]i 3

oU OUI. OU2. OU3. (W ). W· W·
oy = ay-II + oy 12+ ay- 13 = ly+Y6 II + 2y12+ 3y l 3

oU OUt. OU2. OU3. (W ). W· W·
OZ ="&1 1+"&12+"&13= Iz+Yslt+ 2z12+ 3z13,

where Wiy == oW;/oy, Wiz == oW;/oz, and

1319

(22)

(23a)

(23b)

(23c)

The strains are obtained as

k . = OOiO
I - os ' i=I,2,3. (24)

(25)

In Appendix A, we show that the eij are local engineering strains defined with respect to the
deformed coordinate system e'1(. One can rewrite the strains in compact matrix form as

{e} = [X]{t/J} + [i]{W'} + [o]{W} - [I{]{ W} + [X]{t/J} + {rP}, (26a)

where
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{e} == {ell>eI2,eI3,e22,e23,e33}T

{l/J} == {e,Y6,Ys,PI-k l ,P2-k 2,P3-k 3}T

{iP} == {YY6 +zy's, 0, 0, 0, 0, oy
{W} = {WI, W2, w3Y

[[I] [P(O,y, Z)]J
A [[/]J [K] == [[K]J[X] == [0] [0] , [I] == [0] , [0]

0 0 0 0 0 0 0 0 0

%y 0 0 0 P3Y P3Z 0 0 0

[0] ==
%z 0 0

[X] ==
0 -P2Y -P2Z 0 0 0

0 %y 0
,

0 0 0 0 0 0
(26b)

0 ojoz %y 0 0 0 0 0 0

0 0 %z 0 0 0 0 0 0

and [0] is a 3 x 3 null matrix. We note that [K] and [X] are functions of the deformed
curvatures Pi'

Using a finite element discretization scheme (Giavotto et al., 1983; Pai and Nayfeh,
1993), we have

{W} = [N(y, z)]{f(s, t)}, (27a)

where {f} is a 3n x 1 vector consisting of the three relative displacements (with respect to
the ~, " and' axes) of each node on the cross-section, n is the total number of nodes on
the cross-section, and [N] is a 3 x 3n matrix of appropriate two-dimensional finite element
interpolation functions. A two-dimensional, linear, static, sectional analysis gives the central
solutions (Pai and Nayfeh, 1993)

{f} = [G]{-c}, {f/} = [G/]{-c}, {l/J} = [Y]{-c}, (27b)

where [G] and [G /] are 3n x 6 constant matrices, [Y] is a 6 x 6 constant matrix, and {-c} is
a vector of stress resultants defined as

{-c} == {F1,F2,F3,MI>M2,M3Y

==1{O'II, O'12,O'13,YO'13- ZO' 12,ZO'II, -YO' I dT dy dz.

It follows from eqns (27a), (27b) and (26a) that

(27c)

{W} = [N][G][y]-I{l/J}, {W'} = [N][G/][y]-I{l/J} (28a)

{e} = [S]{l/J} + {tP}

[S] == [X] + [i][N][G/][Y] -I + [o][N][G][Y] - I - [K][N][G][Y] -I + [X], (28b)

where [S] is a 6 x 6 matrix.
Next, we need constitutive equations to relate the force strains (i.e. e, Ys and Y6) and

the moment strains (i.e. curvatures Pi) to the stresses. For a general anisotropic beam (e.g.
woven composite beams, built-up beams), the stiffness matrix [Q] is a full symmetric matrix
because there are elastic couplings among all the deformations. Hence, a general stress­
strain relation is represented by

(29)
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where the Uij are local engineering stresses defined with respect to the deformed coordinate
system e,,(. For notational convenience, {u} and {e} are often written as

4. DERIVATION OF THE EQUATIONS OF MOTION

The extended Hamilton principle is used to derive the equations of motion, which can
be stated as

(30)

where variations of the kinetic energy T and the elastic potential energy V are given by

()T= - f 1pfio{)D dA ds (31a)

+ (U21{)~~ dY"il+U22{)~~ dYOi2+U23{)~~ dYO i3)dSdZ

+ (U31{)~~ dzoil+u32{)~~ dZOi2+U33{)~~ dZ o i3)dSdY}

= lL1(UIl&11 +UI2&12+ UI3&13+ U22&22+ U23&23+ U33(33) dA ds (31b)

and () Wnc denotes variation ofthe non-conservative energy Wno which is problem-dependent
and will not be considered in the derivation. Here, A denotes the undeformed cross-sectional
area, L is the total undeformed arc length of the beam, p is the mass density of the material,
the point denotes an inner product of vectors, D is the absolute displacement vector of an
arbitrary point on the observed cross-section (see Fig. 5), and fi == d 2D/dt2. The local
engineering stresses Uij are evaluated with respect to the undeformed area and pointing
along the direction ofij , and the local engineering strains eij are defined in eqn (25).

4.1. Inertial terms
It follows from Fig. 5 that the absolute displacement vector D (i.e. displacements with

respect to an inertial coordinate system) of a generic point on the observed cross-section is
given by

D = U(t)i" + V(t)i6+ W(t)ic+Aia+Bib+Cic+yiy+ziz-Ai,,-Bi6-Cic-yiy-zii

+uix +viy+ wiz+ yi 2+zi3- yiy-ziz+u1i 1+ U2i2 +U3i3. (32a)

Although the in-plane warping displacements W 2 and W 3 may influence the elastic prop­
erties, their contribution to the inertial forces is insignificant. Neglecting W 2 and W 3 in eqn
(20) and using eqns (21) and (28a), we obtain

where W j is the total out-of-plane warping. Neglecting the influence of extension and
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bendings (i.e. e, P2-k2' P3-k3) on the out-of-plane warping WI. we rewrite eqn (32b) as

where

(32c)

000
001
010

100
000
000

+ {O,z,y}. (32d)

Here 9 I is the torsional warping function and 9 2 and 9 3 are shear warping functions.
To derive the equations governing u, v, W, Ys, Y6 and l/J by using a variational method,

one needs to determine the variations of these dependent variables. However, because the unit
vectors ik along the e, ", and' axes are functions of u, v, wand l/J, as shown in eqns (7),
(17a) and (lIb), we need to express bib bi 2 and bi 3 in terms of bU, bV, bw and bl/J. Since bib
bi 2 and bi 3 are due to virtual rigid-body rotations of the observed cross-section, we have

(33)

where MJ I. c5(}2 and c5(}3 are virtual rotations with respect to the e,,,, and' axes, respectively.
It follows from eqns (32a), (32c) and (33) that

(34)

where

(35)

To determine D, we need the angular velocities and rigid-body transformation matrices
of the three coordinate systems. We define the angular velocity ro of the e"" frame as

(36a)

the angular velocity roX of the xyz frame as

(36b)

and the angular velocity ro· of the abc frame as

(36c)

We note that

(36d)

The unit vectors of the libc and abc systems are related by
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(37)

where [T'1 is due to rigid-body rotations, as shown in Fig. 5. We assume that rigid-body
motions of the reference frame abc are known and hence [Ta

] is a function of three known
rotations 0 1(t), O 2(t) and 0 3(t). For example, if these three angles are sequential Euler
angles (first, 0 1 around the ii axis; second, O 2 around the rotated Ii axis; lastly, 0 3 around
the rotated caxis), then

-Si~ 0
2

] [~
cos O 2 0

o
cos0 1

-sin 0 1

We note that if the governing equations of the rigid-body motions of the reference frame
abc (e.g. fuselage) are to be determined as part of the solution, then bU, bV, bW, b0lo b0 2

and b0 3 are nontrivial.
Taking the time derivative of eqn (37) yields

(39a)

Also, it follows from eqns (If) and (36c) that

Hence, we obtain from eqns (39a) and (39b) that

(39b)

3 3
a _ "T'aTa a _ "T'aTa

WI - L... 2; 3;, W2 - L... 3; Ii,
;= I ;= I

3
a _ "T'aTaW3 - L... Ii 2;'

;~ 1
(40)

Moreover, it follows from eqns (36d), (36b), (36c) and (5a) that

3

x " arxW; = L... wj ;j'
j= I

It follows from eqns (If) and (36a) that

i = 1,2,3. (41)

oot {i 123} = WX {i 123} = [P(w)]{i 123 }.

Also it follows from eqn (7a) that

Using eqns (42a) and (42b) and the orthonormality of the ij , we obtain

(42a)

(42b)

3 3 3

WI = L (t2jT3j+wiTlj), W2 = L (t3j Tlj+wi T 2j), W3 = L (tljT2j +wiT 3j)' (43)
j= I j~ I j~ I

Equations (40) and (41) express the components of wa and WX in terms of the 0;, and eqns
(43) express the components of win terms of 0;, U, v, W, ¢, and their derivatives.

Using eqns (32a), (32c) and (Ic-f), we obtain
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fi = Oia+ Vi5 + Wic+A·C+B'ib+C'ic+iiix+viy+Wiz

+2(uix+viy+ wlz)+ Uix+v'iy+ wi'z +91. + y'i2+Zl3 +9i1 +2gl1

= {a, V, W}{ia5c}-({Way[p(A,B,C)]+{way[p(A,B,C)][p(wa)]){iabJ

+ ({ii, ii, w} - {Wxy[P(U, v, W)] - {Wxy[P(U, v, W)][P(WX)] - 2{wX}T[p(U, v, w)]){ixyz }

- ({wy[P(g,y, z)] + {W} T[P(g,y, Z)][P(W)] - {ii, 2gW3' -2gW2} ){i l23}. (44)

Substituting eqns (34) and (44) into eqn (31a) and integrating the result yields

oT ~ - f.' ({A., A" A.} U:} + {A." A." A.,j m:} + (A", A", A,.) {~;}) ds,

(45)

where

{Au,Av,A w } == ({Qly[ry +{Q2y)III -({w}T[ld+{wy[ld[P(w)]-{f11,J12,J13})[T]

{A Oi ' Ao" AoJ == ({Qd T[ry + {Q2YHTFlld + {w}T[12]+ {wy[12][P(w)]

+ {f21,Jn,J23}

{Api,AYS,Ay.} == ({Qly[Txy + {Q2YHTY[13]+ {fSI,JS2,JS3}

{Qd == [Ta]{O, V, W}T+[P(A,B,C)]{wa}_[p(wa)][P(A,B,C)]{wa}

{Q2} == {ii, ii, wy+ [P(U, v, w)]{WX} -[P(WX)][P(U,v, w)]{WX}+2[P(u,v, w)]{WX}. (46)

Here, we used the identity

{wy[P(g,y, z)f[P(w)][P(g, y, z)] = {w} T[P(g, y, z)Y[P(g, y, z)][P(w)] (47)

which can be proved by direct expansion. The inertias are defined as

III 112 113 114 lIs 116
In 123 124 125 126 Y

133 134 135 136
== lp Z

{1,y,z,gJ,g2,g3} dA (48a)
144 145 146 gl

Iss 156 g2

sym. 166 g3

II,] ~Lp[P(g,y,z)] dA ~ [ 0

131 -In ]
0 141 PI +ls~Ys+16IY6 (48b)

skew-sym.

[12] == I p[P(g,y, z)y[P(g,y, z)] dA

~ [In+In -/24P1-/2SYs-/26Y6 -I,ji,-I""-I,,,. ]
pdol +YSf02+ydo3 +133 -/23 (48c)

sym. pdol +YSf02+ydo3+ / n
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1
16

]o ,
o

(48d)

where

{

/21} _ {-2~,([,~,+["i., +["i,)-2<0,(["p, +["i,+["i 'J}
122 = 134PI+/3sYs+/36Y6+2w2(pI!ol+Ys/o2+yJo3)

123 -/24 PI- 12l!s- 126'Y6+ 2w3(tiI!ol +YS/02+yJ03)

(49)

We note that the components of {QI} represent the accelerations due to rigid-body trans­
lations and rotations of the reference frame abc and the components of {Q2} represent the
accelerations due to the flexural displacements and the rotation of the hub. It follows from
eqn (48a) that lij = ~i and / 12 = / 13 = 123 = 0 if P is constant, the x axis represents the
centroidalline, and the y and z axes are principal axes of the cross-section.

4.2. Structural terms
Substituting eqns (29) and (28a, b) into eqn (31 b), we obtain variation of the elastic

energy as

c5V=r1({Y1'6+ ZY'S'0,0,0,0,0} + {if/Y[S]1)[Q)[S]{c5tJ!} dA ds

+r1[ull(yc5y'6+ zc5y's+ W3c5P2- W2c5P3)+udWlc5P3- W3c5PI)

+uI3(W2c5PI - W l c5P2)] dA ds

= r[{F I+.f\,}\+F2,F3+.f\,MI+M1>M2+M2,M3+M3}{c5if/}

-M3c5y'6+M2c5y's+m1c5PI +m2c5P2+m3c5p3] ds,

where the stress resultants and moments are defined as

{F],F2,F3,M],M2,M3Y == [eJ>]{if/}

{F],F2,F3,M],M2,M3Y == [E]{y'}

{-:3}== i {;}UI1dA = [EY{if/} + [F]{y'}

(50)

(51a)
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ml == 1(aI3 W2- a 12 W3) dA = 1{W}T[[P(I, 0, O)][O]]{O"} dA

= {t/I} T[CO]{ t/I} + {t/I} T[CI]{y'}

m2 ==1(0"11 W3-0'13 WI) dA =1[{ W} T[[P(O, 1,0)][0]] {a} -adYY6 +ZY5)] dA

= {t/I} T[C2]{ t/I} + {t/I} T[C3]{y'} - {t/lV[C 4 ]{y} - {y'} T[C5]{y}

m3 ==1(0' 12 WI - 0" II W2) dA = 1[{ W} T[[P(O, 0, 1)][0]] {a} +0' 12(YY6 +zY 5)] dA

= {t/I} T[C6]{ t/I} + {t/lV[C 7]{y'} +{t/IV[C 8]{y} + {y'V[C 9]{y}. (51 b)

Here, [0] is a 3 x 3 null matrix and

{y} == {Y6,Y5}T

{Qi} == {Qil' Qi6, Qi5' Qi2, Qi4, Qi3V

f T - [ [A] [B]J
[cI>] == JA [S] [Q][S] dA = [BV [D]

f T - - [[EI]J[E] == JA [S] [y{Qd z{Qd] dA = [E2]

f - Iy
2

yzJ
[F] == JA Q11 Lvz Z2 dA

[CO] == [y]-T[GV1[NV[[P(I,O,O)][O]]{Q][S] dA

[CI] == [y]-T[GV1[NV[[P(1, O,O)][O]][y{Qd Z{QI}] dA

[C2] == [y]-T[GV1[NV[[P(O, 1,0)][0]]{Q][S] dA

[C3] == [y]-T[GV1[NV[[P(O, 1,0)][0]][y{QI} z{Qd] dA

[C4] == i [SV[y{Q3} Z{Q3}] dA

i ~2 J5 - Y yz
[C] == A Q31 Z Z2 dA

[C6] == [y]-T[GV1[NV[[P(O,O, I)][O]]{Q][S] dA

[C7
] == [y]-T[GV1[NY[[P(O,O, I)][O]][y{QI} z{Qd] dA

[C 8
] ==1[SY[y{Q2} Z{Q2}] dA

i ~2 J9 - Y yz
[C] == A Q21 Z Z2 dA, (SIc)
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where [<Il], [C~, [C 2
] and [C6

] are 6 x 6 matrices, [E], [CI], [C 3
], [C4

], [C7
] and [CS

] are
6 x 2 matrices, [F], [C 5

] and [C' are 2 x 2 matrices, [A], [B] and [D] are 3 x 3 matrices,
[E I

] and [E2
] are 3 x 2 matrices, and [<Il], [F], [C5

], [C', [A] and [D] are symmetric matrices.
The £i and Mi are due to nontrivial values of Ys and Y6; M 2 and M 3 are the bending
moments due to 0' II ; m h m2and m3are nonlinear twisting and bending moments due to
warpings. We note from the expression of [S] in eqn (28b) and eqns (5Ic), (28a) and (26b)
that the influences of warpings, initial curvatures, and shear rotations on the structural
stiffnesses are fully accounted for. Although [K], [Xl and [51 are functions of the curvatures
Pi' one can use k i = Pi in [51 to simplify the formulation without much loss of accuracy. We
note that the introduction of these forces, moments and higher-order quantities is essential
for the reduction of the three-dimensional problem to a one-dimensional one.

Moreover, it follows from eqns (19), (18) and (33) that

rH{)PI ds = r(-H'{)(}I-Hp3{)(}2+ Hp2{)()3) ds+H{)()I!f;

rH{)P2 ds = r(Hp3{)()I-H'{)()2- Hpl{)(}3) ds+H{)()21f;

rH{)P3 ds =r(-Hp2{)(}1 +HpI{)(}2- H'{)()3) ds+ H{)()3 If;, (52a)

where H denotes a stress moment.
Substituting eqns (26b) and (52) into eqn (50) and using the fact that variations ofthe

initial curvatures are zero, we obtain variation of the elastic energy in terms of the stress­
resultants, stress-couples, curvatures and axial strain as

{)V = r{f\{)e-(M; -£3){)Y5 +(M; +£2){)Y6 -(M'I +M3P2 -M2P3){)()1

-(M;-M3PI +MIP3){)()2-(M'3+M2PI-MIP2){)()3} ds

+[M I {)() I +M 2{)() 2 +M3{)e3+M2{)Y5 - M 3{)Y6]f;, (53)

where

MI==M"I+MI+ml> M2==M"2+M2+m2, M 3 ==M"3+ M3+m 3

£1 == £1 +£1> £2 == £2+£2, £3 == £3+£3' (54)

It follows from eqns (lib) and (16) that

Substituting eqn (lib) into (55) and taking the variation, we obtain

Using eqns (lla) and (lIb), we find that

(57)
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Then, using eqns (33), (57) and (7a), we obtain

-(l+e)£502 = (l+e)i 3"£5i 1

= T 31 (£5u' -k3£5v+k2£5w) +Tn(£5v' +k3£5u-k l£5w)

+ T 33 (£5w' -k2£5u+k 1£5v) (58a)

(1+e)£50 3 = (l+e)i2 "£5i 1

= T 21 (£5u' -k3£5v+k2£5w) +Tu(£5v' +k3£5u-k l£5w)

+T23 (£5w'-k2£5u+k 1£5v). (58b)

Substituting eqn (56), F3 x (58a), and F2 x (58b) into eqn (53) and then integrating by
parts, we obtain

ov ~r{-:s ({F" Eo. F,}[T]) {E} + {F" E,,F,}[T][kl'U:}
-[M'l +M3P2- M 2P3]£50 1-[M; -M3PI +M1P3

- (1 +e)F3]£50 2- [M'3 +M2Pl -M1P2 + (l +e)F2]£503

- (M; - F3)£5y s + (M3+F2)£5y 6} ds

+ [{F"F"F,}[T] U:} +M,~e, +M,~e, +M,~e, +M,~y, -M'~Y.J:. (59)

4.3. Equations ofmotion
Substituting eqns (45) and (59) into (30), using eqn (52a), and setting each of the

coefficients of £5u, £5v, £5w, £5el> £5ys, £5Y6' £50 2and £50 3equal to zero, we obtain the following
equations of motion;

(60)

(61)

(62)

(63)

(64)

(65)

Here, we added a linear viscous damping term to each of eqns (60)-(63), which correspond
to £5Wnc in eqn (30), where f.ll> f.l2' f.l3' f.l4' f.ls and f.l6 are damping coefficients per unit length
corresponding to u, v, w, cjJ, Ys and Y6, respectively. The boundary conditions for the beam
are of the form
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bu = 0 or FIT1I +F2T 21 +F3T 31 specified

bv = 0 or FITI2+F2T22+F3T32 specified

bw = 0 or F IT I3 +F2T 23 +F3T 33 specified

<5(J I =0 or £11+A p, specified

bys = 0 or M2 specified

bY6 = 0 or M3 specified

<5(J 2 = 0 or £12 specified

<5(J 3 = 0 or £13 specified.

1329

(66)

Because <5(J 2 and b()3 are functions of bu, bv, bw and their first derivatives with respect to s
[see eqns (58a) and (58b)] and no extra dependent variables describing the rotations with
respect to the '7 and' axes are involved, eqns (64) and (65) are statements of the balance
of moments with respect to the '7 and , axes. Hence, they can be used to solve for the
transverse shear forces F2 and F3• The result is

(67)

(68)

Substituting eqns (67) and (68) into (62) and (63), using (18b), and then putting eqns (60)­
(63) into matrix form, we obtain

(69a)

(69b)

We note that eqn (69b) can also be obtained from eqns (61), (64) and (65) by using eqns
(62) and (63) to eliminate F2 and F3 from eqns (64) and (65).

The expanded form of b() I is also needed in the boundary conditions, which is obtained
from eqns (33), (7a, b), (17a), (57) and (lIb), the orthonormality of the ij , and il·bi l = 0
as

(70)

We note that the equations of motion [i.e. eqns (69a) and (69b)] are nonlinearly coupled
through the components of the transformation matrix [1'] and the curvatures Pi' which are
due to geometric nonlinearities. Also, it can be seen from eqns (69), (51a), (51b), (29) and
(19) that the equations of motion are linearly coupled due to anisotropy and initial curva-

SAS 31:9-J
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tures. Moreover, the boundary conditions are also coupled due to geometric nonlinearities,
anisotropy and initial curvatures, as shown in eqns (66), (58) and (70).

Substituting eqns (12), (lIb) and (17a) into eqn (7b), one can obtain exact expressions
for the elements of the matrix [T] in terms of u, v, w, ¢ and their derivatives. Substituting
these expressions into eqn (19), one can obtain exact expressions for the curvatures in terms
of u, v, w, ¢ and their derivatives. Moreover, the inertial terms in eqn (45) are exact, except
that the inertias due to in-plane warpings are neglected.

5. DISCUSSIONS AND APPLICATIONS

5.1. Characteristics of the model
Because the equations of motion (60)-(65) consist of eight first-order equations with

respect to s subject to eight boundary conditions, it is called an eighth-order system.
However, substituting for the MJj from eqns (70), (58a) and (58b) into eqns (45) and (59),
then substituting the results into eqn (30), and setting each of the coefficients of bu, bv, bw,
b¢, bu', bv', bw', bys and bY6 equal to zero, one obtains nine equations subject to nine
boundary conditions, implying that the system is of ninth order, which is not true. Conse­
quently, we conclude that bu', bv', bw' and b¢ are not independent, and that they are related
in such a way that there are only three independent rotational variations, which are bO [,
b0 2 and b0 3, as shown in eqns (70), (58a) and (58b).

There are no integral terms in the present formulation and the equations are symmetric
and interchangeable because only two Euler angles were used. If three Euler angles were
used in obtaining the transformation matrix [T], then the resulting equations of motion
either are asymmetric or contain integral terms (Pai and Nayfeh, 1990).

Certain small offsets of the blade axis are often provided to reduce steady blade­
bending stresses, to improve rotorcraft flying qualities, or to enhance rotor blade aeroelastic
stability (Hodges, 1976). All the effects of initial bending and twisting curvatures, precone,
droop, sweep, torque offset and blade root offset can be included in the model by properly
choosing the functions A(s), B(s), C(s), 021(S), Ods) and Ods).

Blade root feathering flexibility, which is due to the flexibility of the pitch-link and the
control system and hence permit rigid-body rotation of the blade with respect to the pitch­
bearing axis, can be included by using the boundary condition

(71)

at the blade root, where K", denotes the equivalent torsional spring constant for the pitch
link.

Using eqns (6a) and (18a), we put eqns (60), (61), (64) and (65) in vector form as

where

(74)

Equations (72) and (73) have the same form as those directly obtained from the Newtonian
approach (Pai and Nayfeh, 1990) except that the F j and M j are replaced by the Fj and Mj ,

respectively. However, the differences between the Fj and F j and Mj and M j , which are due
to in-plane and out-of-plane warpings, cannot be easily determined and included in the
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Newtonian approach. Moreover, eqns (62) and (63) cannot easily be obtained directly from
the Newtonian approach.

5.2. Simplified beam theories
For most beam theories, in-plane warpings W 2 and W 3 are neglected. In this case, it

follows from eqn (25) that

(75)

But, for beams with no transverse distributed loads, the assumptions

(76)

are more reasonable than those in eqn (75) (Pai and Nayfeh, 1992). However, both theories
based on the assumptions (75) and (76) do not fully account for three-dimensional stress
effects because 0"22&22+0"23&23+0"33&33 = 0 in eqn (31b), and hence they are only valid
for very slender isotropic beams.

If the small nonlinear moments mi [see eqn (51 b)] due to warpings are neglected in eqn
(54), we obtain from eqns (54), (51a) and (51c) that

{i\,F2,F3 }T = [1]{f}, {M j ,M2,M3 }T = [15]{f}

[1] == [[A][B][E 1
]], [15] = [[BV[D][E2

]]

{f} == {e'Y6,Ys,pj-kbP2-k2,P3-k3'Y6,y~}T, (77a)

where the structural stiffness matrices [1] and [15] are 3 x 8 matrices. Then, by using eqns
(77a) and (51a), we rewrite the governing equations (69a, b) in terms of {f} as

where

[15] == [15] - (1 +e) [ ~ ~] [[E]T[F]].

-1 0

(77b)

(77c)

(77d)

We point out here that [1] and [15] are functions of the initial curvatures ki and hence [1]'
and [15]' are nontrivial, and the fully nonlinear expressions of e and Pi are shown in eqns
(12) and (19). We note that, because the [SJ in eqn (28b) includes the effects due to warpings
and initial curvatures, the effects of initial curvatures, warpings, and three-dimensional
stresses are included in the calculation of stiffness matrices [A], [B], [D] and [E]. The elastic
terms in the governing eqns (77b,c) are functions of u, v, W, <jJ, Ys and Y6, as shown in
Appendix B.

If mi' y's and Y6 are neglected in eqn (51a), it follows from eqn (51a) and (54) that
Fi = Fi and Mi = Mi and the governing equations (69a, b) reduce to
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(78a)

([[Bf[DJ]{+}), - [K)[[B]T[DJ]{+} - [~l ~] (l+e)[E]T{+})'

{

A91-A~, +1l41> }

= A9,-Ap ,p3-(I+e)(Ay ,+llsYs) .

A93 +A p , P2 +(l +e)(AY6 +1l6Y6)

The total out-of-plane warping WI is given by [see eqn (32b)]

(78b)

Out-of-plane warpings due to extension and bendings (i.e. e, P2-k2 and P3-k3) are very
often neglected in beam modeling and hence WI is usually represented by

where the 9i are defined in (32d). In most beam theories, the out-of-plane warping due to
torsion (i.e. 91(PI-k l )) is either neglected or approximated by using St Venant's torsional
warping solutions for isotropic bars. Treating the out-of-plane shear warpings 92YS+93Y6
in different ways results in different beam theories. In the first-order shear theory, which is
called Timoshenko's beam theory in the case of planar vibrations, one assumes that 92 = Z
and 93 = Y (i.e. WI = 0). In the third-order shear theory, one assumes that 92 = Z-4z2/3h 2

and 93 = y_4y3/3[;2 (i.e. WI = -Ys4Z3/3h2_Y64y3/3[;2) in the case of rectangular cross­
sections with width [; and thickness h.

In the Euler-Bernoulli beam theory, it is assumed that

Wi = 9; = Y5 = Y6 = 0, i = 1,2,3 (79)

and hence all warpings are neglected. It follows from eqns (25), (26a, b) and (28b) that

ell = e+z(p2- k 2)-Y(P3- k 3)

el2 = -z(PI-k l ), e l3 = Y(PI -k l ), en = 633 = e23 = 0 (80a)

and

{6} = [S]{l/J}, [S] = [X], (80b)

where the expression of [X] is shown in eqns (l6b) and (If). Hence, it follows from eqns
(79), (80b), (5Ia-c), (54) and (29) that

F; = F;, M; = M;, i = 1,2,3, (81)

where F; and M; are defined in eqn (27c).
For flexible beams, because the inertias are mainly due to the global displacements u,

v, wand </J and inertias due to warpings are negligible, the Euler-Bernoulli assumptions
[see eqn (79)] are appropriate for obtaining inertia terms. Substituting eqn (79) into (48)
and (49) yields
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IOi = Iii = 12i = 13i = 14i = lSi = 0 for i = I, 2, 3

~k = 0 for j > 3 and/or k > 3
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(82a)

o
-~23]' [13] = [0] (82b)
122

(82c)

Thus, the rotary inertia terms in the governing eqns (69a, b) are drastically simplified.
Moreover, if the axis x passes through the mass centroid and the y and z axes are the
principal axes of the mass inertias, then

For hover conditions

121 = 131 = 123 = 0, [Id = [0].

u=v=w=o

(83)

(84a)

and the rotation axis is always along the c axis (see Fig. 2). Hence, ih = ic = ie, and the
transformation matrix [T"] in eqn (38) reduces to

03 =Inet) dt. (84b)

Moreover, it follows from eqns (36b-d) and (5a, b) that

W'j = w'i = 0, w'3 = n
W1 = en, Wz = cos 823n, W"3 = (A' cos 822 - B' cos 82;)n (84c)

and Wi are shown in eqn (43). The equations of motion and boundary conditions for
initially curved and twisted Euler-Bernoulli beams under hover conditions are shown in
Appendix C.

If, furthermore, we assume that the reference frame abc is fixed (i.e. a cantilever beam),
then

(85a)

Hence, it follows from eqns (46), (82a--e), (83) and (85a) that {Qd = {o} and
{Q2} = {u,ii, wV and hence

(85b)

(85c)
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where I22 == [22+[33' Equations (85c) have the same form as the Euler equations used in
rigid-body dynamics.

5.3. Comparisons
The engineering stresses aij and engineering strains 8ij in eqn (29) are geometric mea­

sures and are defined with respect to the deformed coordinate system, which means that it
is appropriate to use a constant material stiffness matrix [Q]. On the other hand, if
the second Piola-Kirchhoff stresses and Green-Lagrange strains are used, deformation­
dependent material stiffness matrices need to be used to relate such energy-related stress
and strain measures.

Furthermore, because of the use of local stress and strain measures, the structural
stiffness matrices, which relate the local internal stress resultants Fi and moments Mi to the
force strains e, Y5, Y6 and moment strains Pi (i.e. curvatures), are obtained by direct
integration [see eqns (51a, c)]. On the other hand, if "global" stress and strain measures
(i.e. stresses and strains defined with respect to the undeformed coordinate system) were
used, one would need to express the total strain energy U of the beam in terms of the force
and moment strains by using the "global" stresses and strains, define the local internal
stress resultants and moments as the derivatives of U with respect to the force and moment
strains, and then take the derivatives of U to obtain the structural stiffness matrices. This
method was used by Hodges (1990), Atilgan and Hodges (1991) and Simo and Vu-Quoc
(1991). We point out here that the stress resultants and moments obtained by using this
method cannot correctly account for the influence of warpings [see eqns (54) and (51 b)]
and do not include the effects ofY'5 and y~ [see eqns (54) and (51a)].

In this paper, the virtual rotations are defined by using the unit vectors of the deformed
local coordinate system ~'7' and can be represented exactly in terms of the variations of the
displacements and their derivatives, as shown in eqns (70) and (58a, b). Moreover, in
obtaining the relations between the variations of the curvatures and the virtual rotations,
we did not use the Kirchhoff kinetic analogy, which was used by most of researchers.

The equations of motion (69a, b) are similar to some other beam equations, especially
those of Hodges (1990), Atilgan and Hodges (1991) and Simo and Vu-Quoc (1991), but
not the same. The stress resultant FI in our theory is tangent to the deformed reference
line, but, in the theories of Hodges (1990), Atilgan and Hodges (1991) and Simo and
Vu-Quoc (1991), F I is not tangent to the deformed reference line because the location of
the local coordinate system is influenced by the shear rotations. The Jaumann-Biot-Cauchy
strains used by Hodges (1990) and Atilgan and Hodges (1991) are very similar to our local
engineering strains in eqns (26a) and (26b), but their strains are defined and explained [see
eqn (18) of Danielson and Hodges (1987); eqn (14) of Hodges (1990); eqn (26) of Atilgan
and Hodges (1991)] to be with respect to the undeformed coordinate system. That is why
they need to use the strains energy U to define the local internal stress resultants and
moments as the derivatives of U with respect to the force and moment strains.

5.4. Applications
The present curved and twisted beam theory can be applied to helical springs. It follows

from Fig. 6 that the unloaded position vector R of the reference point of the observed cross­
section is given by

R = r cos Oia +r sin eib +re tan l/Ji" (86)

where r is the radius of the projection of the reference line onto the a-b plane and l/J is the
pitch angle; both rand l/J are assumed to be constant. Hence, we have

and

ix = ~~ = - re' sin eia +re' cos eib +re' tan l/Ji, (87a)

(87b)
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Fig. 6(a). A helical spring, and (b) two coordinate systems abc and xyz and their relationship.

[

-rO' sin 0

[r] = cos 0

- r 0' sin 0 tan tjI

rO' cos 0

sin 0

rO' cos 0 tan tjI

rO' tan tjI]
o .

-rO'

(88)

Using eqns (88) and (6c) and the identity s cos tjI = rO, we find that the initial curvatures
are

I. I
k1=-costjlsmtjl, kz=O, k 3 =--cosztjl.

r r
(89)

Substituting eqns (88) and (89) into eqns (CIa, b), one can obtain the Euler-Bernoulli beam
model of helical springs.

For circular rings, tjI = 0 and the initial curvatures are obtained from eqn (89) as

I
k 1 = k z = 0, k 3 = --.

r

For straight beams, the initial curvatures k j are zero.

(90)
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6. CLOSURE

A new methodology that combines the dynamics of particles, exact coordinate trans~

formations, the new concept of local engineering stress and strain measures and virtual
local rotations, and the extended Hamilton principle is used to develop a geometrically
exact nonlinear curved beam model for solid composite rotor blades undergoing large
vibrations in three-dimensional space. The six nonlinear equations of motion describing
one extension, two bending, one torsion, and two shearing vibrations are linearly coupled
due to structural anisotropy and initial curvatures and are nonlinearly coupled due to large
rotations. The influence of in-plane and out-of-plane warpings and three-dimensional stress
effects on the elastic properties are accounted for by using central solutions obtained from
a two-dimensional, static, sectional, finite element analysis. Also, extensionality and the
initial curvatures are fully accounted for and the theory contains most of beam theories as
special cases. The derivation enables one to gain additional insight into the physical meaning
of all structural and inertial terms and the relation between the energy and Newtonian
formulations. The fully nonlinear equations ofmotion are expressed in matrix form as eqns
(69a) and (69b).

Acknowledgement-This work was supported by the Army Research Office under Grant No. DAAL03-89-K­
0180.
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APPENDIX A: THE CONCEPT OF LOCAL ENGINEERING STRAINS
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Here we show how local engineering strains can be obtained by using the concept of local displacements.
Figure Al shows the undeformed configuration of the filament AD and its deformed configuration A'B' in the
absence of in-plane and out-of-plane warpings. The position vectors of points A and D are given by

RA = Ro+yiy+zi,

oR
Rs = RA + -tds = RA +[(I-yk3+zk2)ix -zk,iy+yk ti,] ds, (AI)

where oR%s = ix and eqns (6a, b) are used. Hence, the length <IS of AD and the unit vector ii along the x axis are

(A2)

where

We note that ix = ii only if the initial twisting curvature k t = O.
The displacement vector 0 (= AA') of the point A is given by

(A3)

Taking the derivative of eqn (A3) and using eqns (6a, b), (l8a, b) and (A2), we obtain

It follows from Fig. Al that BK = aD/os ds and hence the local axial strain along the eaxis is

(AS)

In the absence of in-plane and out-of-plane warpings, the position vectors of points A' and D' are RA, and RB',
which are given by

RA, = Ro·+yi2 +zi 3

ORA' • • •
Rs' = R A,+ fuds = R A,+[(I+e-YP3+ zp2)1,-zp,1 2+YPt I 3] ds,

where oRo'/os = (1 +e)i, and eqns (I8a, b) are used, Hence, the unit vector ii along the eaxis is

y

1;

Fig. AI. The geometric relation between the undeformed and deformed configurations of a filament
AB.

(A6)
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where
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(A7a)

We note that, if the influence of local rotations due to strainable local displacements was neglected, (A7a) would
reduce to

(A7b)

which would be a reasonable approximation under the assumption of small strains. Substituting eqns (A7a) and
(A4) into eqn (A5) and using eqns (Ila, b) and (7a), we obtain

l+e-YP3 +zP'[1 ] I z'p;+y'p;
= . +e-YP3+ zP, - + .

rr rr

i
=--1.

r

Expanding eqn (A8) and neglecting terms proportional to ym and z", m,n;;' 2, we obtain

0Il = e-Y[P3 - (I +e)k3]+z[p, -(I +e)k,J.

(A8)

(A9a)

We note that k I does not appear in eqn (A9a) and hence the expression of the axial strain along the ~ direction
is the same as that along the ~ direction [i.e. eqn (A9a)] because ii = i l if the influence of k l is neglected [see eqn
(A7b)]. The factor (I +e) in eqn (A9a) is due to the fact that P, and P3 are not real curvatures [see eqn (19)]
whereas k, and k 3 are real curvatures and 0Il is a strain defined with respect to the undeformed length. Assuming
I +e '" I, we rewrite eqn (A9a) as

(A9b)

As pointed out in Section 3, the rigid-body translations and rotations do not produce any strains and the
strains are due to relative displacements. Therefore, one can choose the observed cross section on the '1---{ plane
to be fixed. Consequently, the displacements of an arbitrary point, which is very close to this cross-section, can
be expressed as

UI (s,y, z, /) = u?(s, /) +z[9,(s, /) - 9,o(s)]-y[93(s, /) - 9 30(s)]

u,(s,y,z,/) = u~(s,/)-z[91(s,/)-910(s)]

U3(S,y,Z,/) = u~(s:/)+y[91(s,/)-910(s)], (A10)

where Uh U, and U3 are local, strainable displacements with respect to the~, '1 and' axes, respectively; u?(s, /) :;
u,(s, 0, 0, I), i = 1,2,3; 9 1, 9, and 93 are the rotation angles of the observed cross-section with respect to the
~, '1 and' axes, respectively; 9 10, 9'0 and 9 30 are the initial rotation angles of the observed cross-section with
respect to the ~, '1 and' axes, respectively.

Because the ~'1' is a local coordinate system attached to the observed cross-section and the unit vector i I is
tangent to the deformed reference axis, eqns (21) and (24) are valid. Because all the variables in eqn (AIO) are
zero for any point on the cross-section and only the first derivatives of eqn (AlO) with respect to s, Y and z are
needed to calculate the strains, nonlinear terms are not needed in eqn (AIO). Moreover, because the local
displacement vector U, which is given by

(All)

is an infinitesimal vector defined with respect to the deformed coordinate system, it follows from eqns (All), (21),
(24) and (18a, b) that

0" = ~~ -i\ = e+z(p,-k,)-Y(P3 -k3) (AI2)

which is the same as eqn (A9b). To obtain eqn (A9a), one needs to substitute (I +e)9,o, i = 1,2,3 for 9'0 in eqn
(AIO).



A new theory of curved and twisted composite rotor blades 1339

Since the in-plane and out-of-plane warpings are relative displacements with respect to the flat surface on
the 1'/-( plane, they are essentially local displacements. Hence, warping displacements can be superposed on the
local displacements shown in eqn (AIO) [see eqn (20)], and the above method of deriving local strains is still valid
even with nontrivial warpings.

APPENDIX B: THE EXPLICIT FORM OF STRUCTURAL TERMS IN EQNS (77b, c)

It follows from eqns (7b), (l7a), (lib) and (12) that the transformation matrix [1'] in eqn (77b) is a function
of u, v, wand l/> given by

where

o
cos l/>
-sin l/>

o ] [ Til
sin l/> -Til

cosl/> -Tn

T I2

Til + T;3/(1 + Til)

- T Il T I3 /(I + Til)

(Bla)

I +u' -vk 3 +wk2 v' +uk 3 -wk l w' -uk2+vk l
Til = , T 2 - T I3 = -------,---=------'-

I+e I - l+e' I+e

e = .J(I +u' -vk 3 +wk2)2+(V'+uk 3 -Wk\)2+(W' -uk2+Vk l )2_1

(Bib)

(Blc)

and the initial curvatures k i are known functions of s, as shown in eqns (6c) and (5b). The force strain vector {y;}
and the curvature matrix [K] in eqns (77b,c) are functions of u, v, wand l/> and are obtained from eqns (26b),
(l8b) and (19) as

where

(B2a)

(B2b)

3 3

PI = L (T;i T 3i + Tlik,), P2 = L (- T;i T 3i + T 2ik,),
j= 1 j= I

3

P3 = L (T;i T2i+ T 3ik i)'
;= J

(B2c)

We note that eqns (Bla--<:) and (B2b, c) are valid for all beam theories because they only describe the deformation
of the reference axis ~ and are functions of u, v, wand l/>.

The structural stiffness matrices [A], [B], [D], [E I
], [E2

], [E] and [F] are obtained from eqns (5Ic) and (29)
as

[
[A] [B]J f T-
[BV [D] = A [S] [Qj[S] dA

[
[EI]J r T - ;'l

[E] = [E2] = JA [S] [Y{Qd z{~d] dA, i [y2 yzJ[F] = QII 2 dA,
A yz z

(B3)

where the 6 x 6 matrix [S] is a function of s, y and z and it can be obtained from eqns (28b), (26b) and (27b). We
note that the [S] is a function ofy and z only if the initial curvatures k i are constants and the deformed curvatures
Pi in [X] and rI<.] [see eqn (26b)] are replaced by k i.

APPENDIX C: THE NONLINEAR EULER-BERNOULLI THEORY FOR CURVED BEAMS IN HOVER

Substituting eqns (45) and (59) into eqn (30), using eqns (82c) and (81) and setting each of the coefficients
of <5u, <5v, <5w, <581> <58 2 and <58 3 equal to zero, we obtain the following equations of motion

(Cia)

(Clb)

(C2a)

(C2b)
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We point out here that the governing equations are the four equations in eqns (Cia, b) and eqns (C2a, b) represent
the shear forces F l and F, in terms of stress resultants and moments. The boundary conditions for the beam are
of the form

bu = 0 or F ,T" +F,T'l +F1Tl , specified

bv = 0 or F,Tl,+F,T22+F1Tl' specified

bw = 0 or F,T'l+F,T21+F1TJl specified

be, = 0 or M, specified

be, = 0 or M, specified

bel = 0 or M l specified.

It follows from eqns (27c), (29) and (80a) that

(C3)

{

F'} fA"Bl'BI2B'J
M, = B Il D Il D 12D'l

M, B 12D 12D 22D'l

M l B'lD'lD23D 33

where

(C4a)

Ql5y-Q'6Z
Q55Y' +Q6.z' - 2Q6,yZ

Q"z
QI5YZ-Q'6Z'

Q"z'

We note that the explicit expressions of [T), [K), Pi' and e are the same as those shown in eqns (Bla), (B2b),
(B2c) and (Ble). Moreover, the expressions of Fl and F, can be obtained from eqns (C2a, b).

For helicopter rotor blades in a hover condition, the matrix [T") is a function of time, as shown in eqn (84b).
Moreover, the matrix [T'] is a function of s only, as shown in eqns (5b), and the matrix [T] is a function of sand
t, as shown in eqn (Bla). It follows from eqns (46), (If), (8a~), (83), (84a) and (84c) that the inertial terms are

{~:} - I, ,([r]{Q ,J + {Q,}),

where 122 == 122 +111 and

{QI} = {-nn-AQ',An-BQ',OV

(C5a)

-~~][ 0 w -V]{W~l
WI -w 0 U W,.

o v -u 0 wi
(C5b)


